Resource block assignment
Modulation and coding scheme: 5 bits
Precoding information
Transmission timing for subframe
Described next is the timing control between the X2CCH and the PDCCH.
The transmission timing control is one of the most important problem for a coordinated transmission. It is determined by the serving eNB, and is instructed by the coordinated eNB through the X2 interface. The transmission timing is determined by considering the latency of the X2 interface.
FIG. 10 is an example of the transmission timing between a control channel and a data channel. In FIG. 10, the data and the corresponding X2CCH are transferred to the coordinated eNB prior to the relating transmission (“PDCCH” and “Data from S-eNB”) from the serving eNB to the UE with the timing t2. The transmission timing t1 of the data from the coordinated eNB (“Data from C-eNB”) is determined by the serving eNB based on the maximum latency T of the X2 interface. By the synchronous network between the serving eNB and the coordinated eNB, the data from the serving eNB and the data from the coordinated eNB are delivered with predetermined timing t1 and t2. It guarantees the reception of both data with the simultaneous timing t3.
Including the above-mentioned timing control, the coordinated transmission for each UE is centrally controlled by the serving eNB. The control includes the scheduling of the UE and data, and the transmission timing control.