For example, a quantum dot can be exposed to short chain polymers which exhibit an affinity for the surface and which terminate in a moiety having an affinity for a suspension or dispersion medium. Such affinity improves the stability of the suspension and discourages flocculation of the quantum dot. Examples of additional ligands include fatty acids, long chain fatty acids, oleic acid, alkyl phosphines, alkyl phosphine oxides, alkyl phosphonic acids, or alkyl phosphinic acids, pyridines, furans, and amines. More specific examples include, but are not limited to, pyridine, tri-n-octyl phosphine (TOP), tri-n-octyl phosphine oxide (TOPO), tris-hydroxylpropylphosphine (tHPP) and octadecylphosphonic acid (“ODPA”). Technical grade TOPO can be used. As will be appreciated by the skilled artisan, in aspects of the invention calling for the absence or substantial absence of phosphonic or phosphonate species, use of ligands including such species are preferably avoided.
Suitable coordinating ligands can be purchased commercially or prepared by ordinary synthetic organic techniques, for example, as described in J. March, Advanced Organic Chemistry, which is incorporated herein by reference in its entirety.
According to an additional aspect, the surface of core quantum dots can be altered or supplemented or otherwise reconstructed using metal carboxylate species. This is particularly advantageous to remove phosphonic acid or metal phosphionate species which may be bound to the core quantum dot. According to this aspect, CdSe, ZnS or ZnSe may be grown on core quantum dots using carboxylate based precursors including Cd(oleate)2 and the like and then coated with CdXZn1-XS in situ. Alternatively, the quantum dots may be isolated and then coated with CdXZn1-XS using the high temperature coating methods described herein.