Next, the insulating layer 114 and the insulating layer 115 are sequentially formed (see
In this embodiment, an aluminum oxide film is formed by a sputtering method as the insulating layer 115. At this time, part of oxygen used as a sputtering gas is introduced into the insulating layer 114, whereby a region 114a to be an insulating layer containing excess oxygen is formed.
Part of oxygen in the insulating layer 114 reacts with hydrogen left in the insulating layer 114 to be water in some cases. Thus, in the case where the insulating layer 115 is removed and heat treatment is performed after the insulating layer 115 is formed, hydrogen left in the insulating layer 114 can be released as water. When the formation of the insulating layer 115, the removal of the insulating layer 115, and the heat treatment are repeated sequentially a plurality of times, the hydrogen concentration in the insulating layer 114 can be further reduced.
When oxygen doping treatment and heat treatment are performed after the formation of the insulating layer 114 before the formation of the insulating layer 115, hydrogen left in the insulating layer 114 can be released as water. When the oxygen doping treatment and the heat treatment are repeated sequentially a plurality of times, the hydrogen concentration in the insulating layer 114 can be further reduced.