As the power sources 2791a and 2791b, an RF power source, a DC power source, an AC power source, or the like can be used. The power sources 2791a and 2791b may be different kinds of power sources.
FIGS. 63B and 63C each show potential distribution of the plasma 2788 along dashed-dotted line A-B in FIG. 63A. FIG. 63B shows the potential distribution when a high potential is applied to the backing plate 2789a and a low potential is applied to the backing plate 2789b. In that case, a cation is accelerated toward the target 2766b. FIG. 63C shows the potential distribution when a low potential is applied to the backing plate 2789a and a high potential is applied to the backing plate 2789b. In that case, a cation is accelerated toward the target 2766a. To deposit the oxide semiconductor of one embodiment of the present invention, the state in FIG. 63B and the state in FIG. 63C are alternated.
Note that a substrate 2769 is supported by the substrate holder 2768. The substrate holder 2768 is preferably connected to GND. The substrate holder 2768 may be in a floating state. The substrate holder 2768 is fixed to the deposition chamber 2706b by a movable member 2784. Owing to the movable member 2784, the substrate holder 2768 can move to a region between the targets 2766a and 2766b (a region between targets).