FIG. 6 is a flowchart 60 of exemplary steps of forming Field-Effect Transistors (FETs) and Nanocrystal Integrated Circuits (NCICs) with NC thin films and doping by evaporation and thermal diffusion. The NCs may be cadmium based (e.g., CdS, CdSe, CdTe), zinc based (e.g., ZnS, ZnSe, ZnTe), nickel based (e.g., NiFe), gold based, silver based, bismuth based, lead based (e.g., PbS, PbSe, PbTe). Other suitable NC compositions, alloys and core/shells will be understood by one of skill in the art from the description herein. In a particular embodiment, semiconductor NCs are used. All steps in flowchart 60 may be performed in a nitrogen atmosphere. In an alternative embodiment, all steps in flowchart 60 may be performed using a substantially non-flexible substrate. At block 600, a flexible substrate is encapsulated with an oxide. The flexible substrate may be a polyimide substrate. The thickness of the substrate may be about 25 um, about 50 um, or other thicknesses operable to carry out the invention. The flexible substrate may be covered with an atomic layer deposited (ALD) layer to preshrink the flexible layer for the prevention of delamination and cracking of subsequently deposited layers. The ALD layer may be an oxide. In one embodiment, the ALD layer is Al2O3. In an embodiment where the flexible substrate has a thickness of about 25 um or about 50 um, the ALD layer is about 30 nm thick. The ALD layer may be deposited at a temperature of about 250 C. In one embodiment, where the NC thin film will undergo a solid ligand exchange according to flowchart 10, the surface of the deposited Al2O3 may be derivatized with octadecylphophonic acid (ODPA) to further reduce hysteresis and complete the dielectric stack.