As the metal nitride, specifically, titanium nitride, molybdenum nitride, tungsten nitride, or the like can be used.
As a stack applicable to the high-reflectivity layer or the low-reflectivity layer, a structure in which a high-melting-point metal or the metal nitride is stacked on the lower side and/or the upper side of the high-reflectivity layer or the low-reflectivity layer can be used. Note that as the high-melting-point metal, specifically, chromium, tantalum, titanium, molybdenum, tungsten, neodymium, scandium, yttrium, or the like can be used. With a structure in which the high-melting-point metal or the metal nitride is stacked on the lower side and/or the upper side of aluminum or copper, problems with heat resistance and corrosivity of aluminum or copper can be prevented from occurring.
As a structure of the high-reflectivity layer, a stack in which a tungsten layer is provided over a tantalum nitride layer, or a stack in which a 600 nm-thick aluminum layer is provided between a 100 nm-thick titanium layer and a 200 nm-thick titanium layer can be used, for example.
As the semiconductor material, for example, metal silicide or conductive metal oxide can be used. Specific examples of the conductive metal oxide include indium oxide, tin oxide, indium tin oxide (also referred to as ITO), indium zinc oxide, zinc oxide, zinc oxide to which gallium or aluminum is added, and any of the metal oxides which contain silicon oxide.
As the insulator, one insulator selected from silicon oxide, silicon oxynitride, aluminum oxide, an acrylic resin, a polyimide resin, a benzocyclobutene resin, a polyamide resin, an epoxy resin, a siloxane-based resin, an SOG, or a polysilazane-based SOG or an insulator including any one of these can be used.
<Sealed Object>