The scanning speed of the energy ray is determined in consideration of the shape of the sealant, and the ratio of the area of the low-reflectivity region to the area of the high-reflectivity region is made to vary from region to region on the first substrate in advance according to the scanning speed; in such a manner, the efficiency of heating the sealant is adjusted. As a result, a highly reliable sealed body in which sealing is uniformly performed can be provided. Further, an energy-ray irradiation apparatus can be simplified.
Another embodiment of the present invention is the sealed body in which the high-reflectivity region includes a metal layer, and the low-reflectivity region includes an insulating layer.
The sealed body according to one embodiment of the present invention can be electrically connected to the outside′ of the sealed body through the metal layer which overlaps with the sealant and is provided in the high-reflectivity region. As a result, a highly reliable sealed body in which sealing is uniformly performed can be provided. Further, a sealed body whose size of an outer shape is reduced can be provided. A sealed body in which various elements (e.g., an electronic element, a light-emitting element, a circuit element, a memory element, and an arithmetic element) that can be electrically connected to a circuit outside the sealed body are used as a sealed object can be provided.
Another embodiment of the present invention is a light-emitting module including the sealed body, in which, in the sealed body, a light-emitting element including a layer containing a light-emitting organic compound between a first electrode and a second electrode is sealed as the sealed object.