白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Quantum dot light enhancement substrate and lighting device including same

專利號(hào)
US10096744B2
公開日期
2018-10-09
申請(qǐng)人
SAMSUNG ELECTRONICS CO., LTD.(KR Gyeonggi-Do)
發(fā)明人
Seth Coe-Sullivan; Peter Kazlas
IPC分類
H01L33/06; H01L33/04; H01L33/42; H01L33/50; H01L33/58; H01L33/60; H01L51/50; H01L51/52; H01L51/56; H05B33/14; H01L27/32; H01L31/0352
技術(shù)領(lǐng)域
quantum,dots,qd,in,light,ccm,material,qds,certain,emitting
地域: Suwon-si

摘要

A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein. In certain embodiments, a lighting device includes a component described herein.

說(shuō)明書

OLED technology has been widely viewed as having great potential for SSL. Until recently, these devices utilized fluorescent emitter species which, due to their intrinsic, unmodified limitations, could theoretically emit at 5% external efficiency. This is due to the fact that fluorescent small molecule materials can create photons out of only 25% of the electricity they consume, and that in an unmodified device only ?20% of the generated photons escapes wave-guiding. The development of Phosphorescent OLEDs (Ph-OLEDs), first introduced by Prof. Marc Baldo, which can theoretically harvest 100% of consumed energy, has increased this efficiency potential substantially with recent devices exhibiting 40 lm/W with an EQE of 20% (unmodified by further out-coupling enhancements) (N. Ide et al., “Organic Light Emitting Diode (OLED) and its application to lighting devices,” SPIE Proceedings, 6333, 63330M (2005)). Similarly, advances in optical out-coupling have improved extraction efficiencies by up to 85% (Y.-C. Kim, S.-H. Cho, Y. W. Song, Y.-J. Lee, Y.-H. Lee, Y. R. Do, Appl. Phys. Lett. 2006, 89, 173502).

In certain embodiments, waveguide-mode dynamics are included with a film or layer comprising quantum dots to provide a low-complexity, low cost, and more effective means of out-coupling blue light (e.g., blue light emitted from a Ph-OLED light) while using QD technology to tune this emission into high CRI light. This can be accomplished by using a high index of refraction (n) QD film between the ITO and the substrate, effectively coupling the light specifically and predominantly into the film via its favorable location and n, as shown in FIG. 3.

權(quán)利要求

1
微信群二維碼
意見反饋