Referring to FIG. 3, the light emitting device 100 may include the light emitting chip 110 and the phosphor layer 120. The phosphor layer 120 may absorb some of light emitted from the light emitting chip 110 and may convert the light into light having another wavelength. The phosphor layer 120 may be formed by adding a phosphor to a light-transmitting resin material, such as, e.g., silicon or epoxy, and the phosphor may include at least one of a yellow phosphor, a green phosphor, a blue phosphor, and a red phosphor. For example, the phosphor layer 120 may be one or more selected from nitride/oxynitride phosphor mainly activated by lanthanoid element, such as Eu or Ce, alkaline earth halogen apatite phosphor mainly activated by lanthanoid element such as Eu or transition metal element such as Mn, alkaline earth metal boric acid halogen phosphor, alkaline earth metal aluminate phosphor, rare earth aluminate mainly activated by alkaline earth silicate, alkaline earth emulsion, alkaline earth thio-gallate, alkaline earth silicon nitride, germanide or lanthanoid element such as Ce, and organic and organic complex mainly activated by rare earth silicate or lanthanoid element such as Eu.
The light emitting device 100 may combine light emitted from the phosphor layer 120 and light emitted from the light emitting chip 110 to emit white light. The white light may have at least one color temperature of warm white, a cool white, and neutral white. The phosphor layer 120 may be provided as a film type, and thus, an upper surface and a lower surface of the phosphor layer 120 may be provided as a plane. However, the present embodiment is not limited thereto.