All these devices may accompany a subject who is to be scanned. When these devices are moved into the magnetic field, the devices are frequently damaged. Many of these devices are expensive and costly to repair or replace. Typically, when a device is operated in a high magnetic field, electromechanical components in the device burn out. In the high magnetic field, ferrous components can saturate causing excessive current to be drawn. Such electromechanical components include motors, pumps, and solenoids.
A common response to preventing damage to devices is product labeling. The product labels warn against operating the device near a magnetic field which is usually a warning not to use the product in an MRI environment or to limit the distance that the product can be in proximity to a high powered magnet. Rooms containing scanners are often marked on their floor with tape that indicates such distances e.g. a 5000 gauss line. This is difficult and calls for attention by care givers, who are focused on the care of the subject. In addition, the distance relation between the strength of the magnetic field and the distance to the magnet is non-linear. The magnetic field is strongest at the poles and weakest between poles. This makes estimation of the effect of a high magnetic field difficult for a care provider.
Another response is to add magnetic shielding to a product. However, the magnetic shielding is heavy and limits portability and in some cases safety of the product. If the shielding comes proximate to the magnet, it is attracted to the isocenter of the magnet which can result in a projectile moving toward and in the bore of the high powered magnet. The bore is the same space in which a subject is located during the scanning process.