白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Charging device having small loop transmission coils for wireless charging a target device

專利號
US10097031B2
公開日期
2018-10-09
申請人
Hong Kong Applied Science and Technology Research Institute Company Limited(HK Shatin)
發(fā)明人
Yan Liu; Jun Chen
IPC分類
H02J7/00; H02J7/02
技術(shù)領域
coil,coils,antenna,loop,charging,small,primary,in,wireless,pair
地域: Hong Kong

摘要

A charging device to wirelessly charge a target device, including: a coil antenna having a first surface facing a first direction at which the target device is placed for charging and a second surface facing an opposite direction from the first direction, generating a first magnetic field; a plurality of pairs of metallic small loop transmission coils arranged to the second surface side of the coil antenna, to generate a second magnetic field in response to the first magnetic field to enhance the first magnetic field, the first and second magnetic fields being directed in the first direction; and wherein a first one of each pair of metallic small loop transmission coils is coupled to a second one of the pair in parallel and a size of the first one of each pair is different from that of the second one of the pair, such that when a distance between the target device and the first surface is changed, one of the pair of metallic small loop transmission coils is enabled to be resonant with the coil antenna.

說明書

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Wireless charging is commonly divided into two types. One of the wireless charging types is a magnetic induction type and the other is a magnetic resonance type. Both of these types work on near field technology, i.e., the electromagnetic field dominates the region close to both the PTU and the PRU. The magnetic induction type includes two coils which are very close to each other, generally within a range of a few millimeters to a few centimeters. The magnetic resonance type includes two resonant coils, which are generally separated in a range of a few centimeters to a few meters, operating at the same resonant frequency, are strongly coupled, and thus a high charging efficiency is achievable.

As illustrated in FIG. 1A, a wireless charger 11 includes an induction coil antenna 12. The wireless charger 11 senses the presence of a mobile device (target device) 13 for charging on a flat surface of a charger base 14. The induction coil antenna 12 creates an alternating electromagnetic field from within the wireless charger 11, and a second induction coil (not shown) in the mobile device 13 takes power from the alternating electromagnetic field and converts the power back into electric current to charge a battery in the mobile device 13 or to provide direct operational power to the mobile device 13. However, the design of a coil antenna in existing wireless chargers usually suffers from a non-uniformity of the magnetic field issue, especially at an edge region of the induction coil antenna 12. This issue is problematic since an unevenly distributed magnetic field over the charger base surface 14 greatly impacts the charging efficiency, particularly in a negative way.

權(quán)利要求

1
微信群二維碼
意見反饋