What is claimed is:1. A soft-switching auxiliary circuit applicable to a converter comprising a first main switch and a second main switch, and the soft-switching auxiliary circuit comprising:a first auxiliary switch, one end of the first auxiliary switch being coupled to one end of the first main switch via a first node, wherein the first auxiliary switch comprises a first transistor, and the first transistor is a bipolar junction transistor; a collector of the first transistor is coupled to the first node, and an emitter of the first transistor is coupled to the second node;a first energy adjustment module, one end of the first energy adjustment module being coupled to the other end of the first auxiliary switch via a second node, wherein the first energy adjustment module comprises a first inductor, a second inductor, a first capacitor, a first diode and a second diode; one end of the first inductor is coupled to the second node, and the other end of the first inductor is coupled to one end of the first capacitor via a sixth node; the other end of the first capacitor is coupled to the third node; a positive electrode of the first diode is coupled to the second node and a negative electrode of the first diode is coupled to one end of the second inductor; the other end of the second inductor is coupled to the third node; a positive electrode of the second diode is coupled to the fifth node and a negative electrode of the second diode is coupled to the sixth node;a second energy adjustment module, one end of the second energy adjustment module being coupled to the other end of the first energy adjustment module, the other end of the first main switch, and one end of the second main switch; anda second auxiliary switch, one end of the second auxiliary switch being coupled to the other end of the second energy adjustment module via a fourth node, and the other end of the second auxiliary switch being coupled to the other end of the second main switch via a fifth node.2. The soft-switching auxiliary circuit of claim 1, wherein the first energy adjustment module and the second energy adjustment module are DC-link resonant circuits.3. The soft-switching auxiliary circuit of claim 1, wherein the converter is a half-bridge converter.4. The soft-switching auxiliary circuit of claim 1, wherein the second energy adjustment module comprises a third inductor, a fourth inductor, a second capacitor and a third diode.5. The soft-switching auxiliary circuit of claim 4, wherein one end of the second capacitor is coupled to the third node, and the other end of the second capacitor is coupled to one end of the third inductor via a seventh node; the other end of the third inductor is coupled to the fourth node; a positive electrode of the second diode is coupled to the third node, and a negative electrode of the second diode is coupled to one end of the fourth inductor; the other end of the fourth inductor is coupled to the fourth node.6. The soft-switching auxiliary circuit of claim 5, wherein the second energy adjustment module further comprises a fourth diode; a negative electrode of the fourth diode is coupled to the first node, and a positive electrode of the fourth diode is coupled to the seventh node.7. The soft-switching auxiliary circuit of claim 6, wherein the second auxiliary switch comprises a second transistor, and the second transistor is a bipolar junction transistor; a collector of the second transistor is coupled to the fourth node, and an emitter of the second transistor is coupled to the fifth node.8. A soft-switching auxiliary circuit applicable to a converter comprising a first main switch and a second main switch, and the soft-switching auxiliary circuit comprising:a first auxiliary switch, comprising a first transistor, and the first transistor is a field-effect transistor; a drain of the first transistor is coupled to a first node, and a source of the first transistor is coupled to a second node;a first energy adjustment module, comprising a first inductor and a first capacitor, wherein one end of the first inductor is coupled to the second node; one end of the first capacitor is coupled to a third node;a second energy adjustment module, one end of the second energy adjustment module being coupled to the other end of the first energy adjustment module, the other end of the first main switch, and one end of the second main switch; anda second auxiliary switch, one end of the second auxiliary switch being coupled to the other end of the second energy adjustment module via a fourth node, and the other end of the second auxiliary switch being coupled to the other end of the second main switch via a fifth node;wherein the first energy adjustment module further comprises a second diode; a positive electrode of the first diode is coupled to the fifth node, and a negative electrode of the first diode is coupled to a sixth node; the other end of the first inductor is coupled to the other end of the first capacitor via the sixth node.9. The soft-switching auxiliary circuit of claim 8, wherein the second energy adjustment module comprises a second inductor and a second capacitor.10. The soft-switching auxiliary circuit of claim 9, wherein one end of the second capacitor is coupled to the third node, and the other end of the second capacitor is coupled to one end of the second inductor via a seventh node; the other end of the second inductor is coupled to the fourth node.11. The soft-switching auxiliary circuit of claim 10, wherein the second energy adjustment module further comprises a second diode; a positive electrode of the second diode is coupled to the seventh node, and a negative electrode of the second diode is coupled to the first node.12. The soft-switching auxiliary circuit of claim 11, wherein the second auxiliary switch comprises a second transistor, and the second transistor is a field-effect transistor; a drain of the first transistor is coupled to the fourth node, and a source of the second transistor is coupled to the fifth node.