If it is determined, in block 304, that there is no voltage change above a voltage-change threshold, the converter (or converters) of the system are controlled by the steady-state controller in block 306. In some embodiments, as discussed, this may involve the two controllers communicating based on the determination at block 304, and determining that the steady-state controller would issue commands to the converters, and the oversampling controller would remain inactive. In other embodiments, also as discussed, this may involve each controller responding to the change in voltage as if the other controller does not exist. In this embodiment, the oversampling controller may be configured to only issue commands when a voltage change above a voltage-change threshold occurs. Further, in this embodiment, the oversampling controller may be configured to override the steady-state controller when the steady-state controller does issue a command. Once the steady-state controller controls the converter(s) of the system in block 306, the controllers again measure the voltage in block 302.
However, if it is determined, in block 304, that there is a voltage change above a voltage-change threshold, the converter (or converters) of the system are controlled by the oversampling controller. In some embodiments this may occur with a method similar to one of those already discussed (e.g., the two controllers may communicate and the steady-state controller may remain inactive, or the oversampling controller may override the steady-state controller). The voltage at the load is then measured again at block 310, by at least the oversampling controller, and potentially also the steady-state controller. Whether the steady-state controller measures at 310 may depend, for example, on whether the steady-state controller is beginning a PWM cycle at the time.