If the source video is interlaced, in an embodiment, the top field and bottom field are processed independently during the vertical filtering (e.g., down-sampling or up-sampling). Then the fields are merged (e.g., by line interleaving) to create a frame. If an AVC encoder is being used, then the interlaced signal can be coded either in frame coding mode or field coding mode. The codec RPU should also be instructed whether to process an inter-view reference picture from BL as a frame or fields. In AVC coding, there is no indication of the scan type of a coded sequence in the mandated bitstream, since it is out of the scope of decoding. There might be some information presented in the Supplemental Enhancement Information (SEI) message, but a SEI message is not required for decoding. In one embodiment, a high level syntax is proposed to indicate if the RPU should apply frame or field processing. In one embodiment, if it is an interlaced signal, no matter how a picture is coded, the RPU may always process the picture as separate fields. In another embodiment, the RPU may follow how the BL signal is coded. Hence, if the BL signal is coded as fields, the RPU applies field processing, otherwise it applies frame processing.
Embodiments of this invention comprise a variety of filters, which can be categorized as: multiplexing (or muxing) filters, RPU filters, and de-multiplexing (or de-muxing) filters. When designing muxing filters, the goal is to maintain as much information as possible from the original filter, but without causing aliasing. For down-sampling, a muxing filter may be designed to have very flat passband response and strong attenuation at the midpoint of the spectrum, where the signal is folded during down-sampling, to avoid aliasing. In an embodiment, (in Matlab notation) an example of such a filter has coefficients: