The first two approaches increase PUCCH overhead compared to using only PDCCHs for scheduling PDSCHs even though an average number of such PDSCHs per subframe may not be larger than when both PDCCHs and EPDCCHs are used. The first approach results in a larger increase in PUCCH overhead as, if a UE does not read the PCFICH, it may need to assume the largest number of CCEs for PDCCH transmissions. The third approach may avoid increasing the PUCCH overhead but may place significant restrictions on the scheduler operation, which may not be feasible in practice.
Therefore, there is a need to define PUCCH resources for HARQ-ACK signal transmissions in response to detections of PDCCHs, distributed EPDCCHs, and localized EPDCCHs associated with respective PDSCHs, while minimizing the associated overhead and avoiding using the same PUCCH resource for multiple HARQ-ACK signal transmissions.
There is also a need to allocate different PUCCH resources for HARQ-ACK signal transmissions from different UEs in response to respective EPDCCH detections associated with respective PDSCHs and sharing a same first ECCE.