The RNC may monitor the resource utilisation level of the RACH against one or more thresholds. Merely as an example, there may be just one threshold and when the resource utilisation level is above the threshold the resource utilisation level is deemed high and when the resource utilisation level is below the threshold the resource utilisation level is deemed low. In the example above with the resource utilisation level being relatively high or alarmingly high, there may be two thresholds. In an example when the resource utilisation level of the RACH is determined to be e.g. below the threshold at a first time T0 and the resource utilisation level of the RACH is determined to be below the threshold also at a second time T1, then the value of the at least one RLC parameter is set to be the same at time T1 as it was at time T0. The same is valid of the resource utilisation level of the RACH was above the threshold both at T0 and T1. However, if the resource utilisation level of the RACH crosses the threshold between time T0 and T1, then the value of the at least one RLC parameter is changed in order to adapt to the changed circumstances on the RACH. If the resource utilisation level has dropped, then the UEs in CELL_FACH state may be given more opportunity to transmit data on the RACH by decreasing the value of Timer_Poll and increasing the value of Tx_Window_Size. Thus the resources of the RACH are optimised to be used as much as possible.
However, if the resource utilisation level has increased, then the UEs in CELL_FACH state may be given les opportunity to transmit data on the RACH by increasing the value of Timer_Poll and decreasing the value of Tx_Window_Size. Thus avoiding a possible overload situation of the RACH with possible quality deterioration as a consequence.