白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Melt depth determination using infrared interferometric technique in pulsed laser annealing

專利號
US10219325B2
公開日期
2019-02-26
申請人
Jiping Li(US CA Santa Clara)
發(fā)明人
Jiping Li
IPC分類
H05B6/00; G01B11/06; H01L21/67
技術(shù)領(lǐng)域
radiation,substrate,radiant,coherent,can,melted,surface,detector,be,melt
地域: CA CA Palo Alto

摘要

Methods and apparatus for measuring the melt depth of a substrate during pulsed laser melting are provided. The apparatus can include a heat source, a substrate support with an opening formed therein, and an interferometer positioned to direct coherent radiation toward the toward the substrate support. The method can include positioning the substrate with a first surface in a thermal processing chamber, heating a portion of the first surface with a heat source, directing infrared spectrum radiation at a partially reflective mirror creating control radiation and interference radiation, directing the interference radiation to a melted surface and directing the control radiation to a control surface, and measuring the interference between the reflected radiation. The interference fringe pattern can be used to determine the precise melt depth during the melt process.

說明書

The second side of the substrate 14 acts as a partially reflective mirror for the radiant interface detector 10, which will split the coherent radiation 12 into control radiation 22 which is reflected back to the radiation sensor 20 and interference radiation 24. The interference radiation 24 can pass through substrates that are transparent to the selected wavelength of light, such as silicon, quartz or sapphire substrates when using infrared light. A first side of the substrate 14 or a portion thereof can be melted creating a melted surface 26. The melted surface 26 is reflective to the coherent light, such as that from the interference radiation 24. The interference radiation 24 can then be reflected from the back of the melted surface 26 toward the radiation sensor 20. The interference radiation 24 can be reflected along the same path as the control radiation 22 creating a combined radiation 28. The power and the spatial shape, for example the pattern of intensity, of the combined radiation 28 along with the known thickness of the substrate 14, can then be used to determine the depth of the melted surface 26.

The radiant interface detector 10 can also include a light selective barrier 25. The light selective barrier 25 can prevent coherent radiation from passing while allowing another coherent radiation to pass freely based on physical characteristics of the radiation, for example a bandpass or long-wavelength pass filter. In one embodiment, the light selective barrier 25 can block the wavelength of coherent radiation, such as a front side laser, without affecting the transmission of interference radiation through.

權(quán)利要求

1
微信群二維碼
意見反饋