The present inventors have recognized, among other things, a wireless personal area network (PAN) underlying cellular networks. The underlying cellular networks can include next generation mobile networks (NGMN) based on long term evolution (LTE) or 5G air interfaces or beyond. The PAN can include, among other things, one or more Internet-of-Things (IoT) devices, such as one or more wearable user equipment (UE-W) devices, and a user equipment aggregation node (LE-AN) that, when combined, address one or more of the following usage scenarios: low latency; energy efficient; spectrum efficient; density; and low cost, to be disposable or deployable on a mass scale.
IOT devices can be generally classified into three categories: machine-type communication (MTC), such as machine-to-machine (M2M); vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) (together, V2X); and wearable (W). MTC devices require range, latency, and energy efficiency. V2X devices require reliability and latency. Wearable devices require energy efficiency, latency, spectrum efficiency, and density.
For wearable devices, connectivity implementations having energy and spectrum efficiency, scalability, and flexibility in supporting device traffic types and requirements may enable communication among personal smart devices, including wearable devices and smart phones, and between smart devices and the wide-area wireless networks.
Legacy connectivity implementations for wearable devices are generally based on the IEEE 802.15 family of technologies, and are typically designed to target certain applications.