In FIG. 1, each sensor 110 collects information about the observed subject 105 and transmits information, over a wireless radio channel, to a base station (BS) 120 via a wireless connections 115. For example, the BS 120 may include (or be) one or more of several well-known devices, such as a base transceiver station (BTS), a radio base station, a Node-B (NodeB), an evolved NodeB (eNodeB), a Home eNodeB, a gNodeB (sometimes called a “gigabit” Node B), a transmission point (TP), a transmit and receive point (TRP), a site controller, an access point (AP), or a wireless router, among other possibilities. Although only one BS 120 is shown in FIG. 1, it should be understood that there may be a plurality of BSs 120 in the system 100. A plurality of BSs 120 may be managed by a radio network controller (RNC) or a base station controller (BSC). In examples where an RNC or BSC is present in the system 100, one or more functions described herein as being implemented at the BS 120 may instead by implemented at the RNC or BSC. For simplicity, the present disclosure will discuss implementation at the BS 120 (instead of at the RNC or BSC), however it should be understood that this is not intended to be limiting. Each BS 120 may communicate with and manage a respective plurality of sensors 110. Each sensor 110 may communicate with and be managed by a respective one BS 120. In some cases, a sensor 110 may communicate with and/or be managed by a plurality of BSs 120. In some examples, different sensors 110 may transmit information to different BSs 120, and may use different channels for the wireless communication 115. For convenience, the BS 120 will be referenced in the singular, however it should be understood that there may be a plurality of BSs 120, and the functions described for a BS 120 may be performed by multiple BSs 120.