In one fundamental aspect, the present invention provides methods and apparatus that enable a multi-cell wireless network (e.g., cellular telephone network) to schedule known data signals (such as pilot tones) or non-data signals (such as preambles or learning sequences) in order to minimize inter-cell interference (ICI). In one embodiment, the wireless network utilizes an OFDMA spectral access technique, and the base stations collaborate on dynamic modification of their non-data schedules, so as to mitigate ICI at the receiver (e.g., mobile device or UE). Unlike user data signals, the pilot tones or non-data signals can be rapidly communicated between the various base stations or known a priori, thereby avoiding any significant latency in implementing the aforementioned dynamic schedule modification. Furthermore, due to the regular nature of such scheduling, communication between base stations can be advantageously limited to relatively infrequent modification of pilot tone or non-data schedules. Hence, by applying the techniques of the present invention to only known or predictable portions of the transmitted signal (hence the term “partial interference reduction”), this aspect of the invention obtains a high level of ICI reduction, while not sacrificing latency or requiring excessive processing overhead or resources within the base stations or UEs.