In the method of the aforementioned embodiments, if a base station is able to inform a UE of a RACH zone before a RACH process is performed (e.g., the base station can broadcast information on the RACH zone to the UE via a physical broadcast channel (PBCH) or a system information block (SIB) of LTE system), the RACH zone may not be restricted to the center frequency of the N number of BRs. For example, if the base station defines the information on the RACH zone (information on RACH subframe/RB, etc.) in advance and informs the UE of the information, the UE can transmit a RACH sequence in a specific RB of a notified RACH subframe.
In the method of the aforementioned embodiments, the base station can inform the UE of a RACH subframe using a relationship with a period of a PBCH subframe. For example, (1) if a PBCH is transmitted in every 2 ms (10 subframes), a RACH zone can be set to a next subframe of the PBCH. (2) If RACH is more intermittently transmitted compared to a period of a PBCH, a field indicating information on a RACH subframe is added to information on the PBCH to make the UE know that a RACH zone is allocated to a prescribed subframe after the field is received. If a RACH zone is published on the PBCH via the method above, since time taken for performing RRC connection with the UE is reduced (SIB reception time or delay for a period is reduced), it is able to achieve low latency. Moreover, since a procedure after initial access (synchronization, system information, random access) quickens, a case for a base station to transmit and receive data via cell-specific information is reduced. Hence, it is able to reduce common control information and increase dynamic utilization of a resource via user-specific information.