FIG. 13 is a planar cross-sectional view of a light fixture 1300, according to aspects of the disclosure. The light fixture 1300 differs from the light fixture 300 of FIG. 3 in that in it includes a cap assembly 1302 in place of the cap 306, which is arranged to allow a light sensor 336, as shown in FIG. 5, to detect ambient light in the vicinity of the light fixture 300. As illustrated, the cap assembly 1302 may include a frame 1306 and a light-transmissive portion 1308 that is coupled to the frame 1306. The light-transmissive portion 1308 may be made of any suitable type of light-transmissive material, such as glass or plastic. In some implementations, the light transmissive portion 1308 may include a window. Additionally or alternatively, in some implementations, the light-transmissive portion 1308 may include a lens. The light sensor 336, in some implementations, my include a charge-coupled device (CCD). Additionally or alternatively, in some implementations, the light sensor 336 may include or be proximate to a camera. The light sensor 336 may be disposed in the hollow passage 206 of the illumination source 200, such that at least some of light passing through the light-transmissive portion 1308 of the cap assembly 1302 reaches the light sensor 336. The light sensor 336 may be operatively coupled to at least one controller (not shown) that is part of the light fixture 1200. As discussed above with respect to FIG. 3, the controller may be configured to receive a signal that is generated using the light sensor 336 and turn on or otherwise change the state of the light fixture 1300 when the level of the signal crosses a threshold.