The control modules 206 can be used to monitor and control the I/O modules 204, and to connect two or more I/O modules 204 together. In embodiments of the disclosure, a control module 206 can update a routing table when an I/O module 204 is connected to the process control system 200 based upon a unique ID for the I/O module 204. Further, when multiple redundant I/O modules 204 are used, each control module 206 can implement mirroring of informational databases regarding the I/O modules 204 and update them as data is received from and/or transmitted to the I/O modules 204. In some implementations, two or more control modules 206 are used to provide redundancy.
Data transmitted by the process control system 200 can be packetized, i.e., discrete portions of the data can be converted into data packets comprising the data portions along with network control information, and so forth. The process control system 200 can use one or more protocols for data transmission, including a bit-oriented synchronous data link layer protocol such as High-Level Data Link Control (HDLC). In some embodiments, the process control system 200 implements HDLC according to an International Organization for Standardization (ISO) 13239 standard, or the like. Further, two or more control modules 206 can be used to implement redundant HDLC. However, it should be noted that HDLC is provided by way of example only and is not meant to be restrictive of the present disclosure. Thus, the process control system 200 can use other various communications protocols in accordance with the present disclosure.