The inlet channel 114, the auxiliary channel 604, the first stackable channel 116, the second stackable channel 118, the third stackable channel 410, the fourth stackable channel 412, the fifth stackable channel 414, the sixth stackable channel 416 and the outlet channel 120 can provide one or more paths for the coolant fluid to flow through the cold plate device 102″. The auxiliary channel 604 can receive the coolant fluid from the inlet channel 114. The coolant fluid can also flow through the auxiliary channel 604. Furthermore, the coolant fluid can be provided to the first stackable channel 116, the second stackable channel 118, the third stackable channel 410, the fourth stackable channel 412, the fifth stackable channel 414, the sixth stackable channel 416 and/or the outlet channel 120 via the auxiliary channel 604. For example, a nozzle region 606 of the auxiliary channel 604 can provide an opening between at least the fourth stackable channel 412 and the auxiliary channel 604. Additionally, the coolant fluid can flow through the inlet channel 114 and into the first stackable channel 116. The coolant fluid can also flow through the second stackable channel 118, the third stackable channel 410, the fourth stackable channel 412, the fifth stackable channel 414 and/or the sixth stackable channel 416. Moreover, the coolant fluid can flow through the outlet channel 120 and an outlet port 122 can provide an outlet for the coolant fluid to exit the cold plate device 102″. The coolant fluid provided to the cold plate device 102″ can be transformed into a liquid-vapor mixture (e.g., a two-phase mixture) as the liquid coolant flows through the set of channels (e.g., the inlet channel 114, the auxiliary channel 604, the first stackable channel 116, the second stackable channel 118, the third stackable channel 410, the fourth stackable channel 412, the fifth stackable channel 414, the sixth stackable channel 416, and/or the outlet channel 120) included in the cold plate device 102″.