In one embodiment, the last scheduling time unit or TTI can be indicated through the timing offset relative to the reception of the control signal. Alternatively, the last scheduling time unit or TTI could be indicated by index of the scheduling time unit or TTI.
In one embodiment, the control signal can be transmitted multiple times in different timings (e.g. different subframes or slots) within the current channel occupancy. Furthermore, the control signal can be transmitted periodically within the current channel occupancy. The information of the ending scheduling time unit or TTI and/or ending symbol indicated in these multiple or periodically transmitted control signals should be consistent and imply the same last scheduling time unit or TTI with respective indicated time durations. The time duration indicated in the multiple or periodical control signals may be different.
In one embodiment, the network or TRP or gNB does not indicate and set scheduling time units or TTIs other than the ending scheduling time unit or TTI as the last scheduling time unit or TTI in the time duration indicated in the control signal.
In one embodiment, the scheduling time unit or TTI could mean a slot, a subframe, or a mini-slot.
In one embodiment, the TRP, gNB, or network could perform channel sensing (LBT) on a beam before a transmission. In particular, the TRP, gNB, or network could perform channel sensing (LBT) on a beam to assure the channel is clear, and could occupy the channel for a time duration if the channel is assured as clear.
In one embodiment, “channel occupancy” could mean a time interval within which a wireless node occupied an unlicensed channel and the wireless node is allowed to transmit in the unlicensed channel, wherein the wireless node may be a network node, or a UE node.