白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Method and apparatus for channel usage in unlicensed spectrum considering beamformed transmission in a wireless communication system

專利號
US10841914B2
公開日期
2020-11-17
申請人
ASUSTek Computer Inc.(TW Taipei)
發(fā)明人
Jia-Hong Liou; Ming-Che Li
IPC分類
H04W72/04; H04W16/14; H04B7/02; H04L5/00
技術(shù)領(lǐng)域
ue,tti,beam,ul,subframe,scheduling,channel,in,trp,or
地域: Taipei

摘要

A method and apparatus are disclosed from the perspective of a UE (User Equipment). In one embodiment, the method includes the UE monitors or receives a control signal within a channel occupancy, wherein the control signal indicates a number of consecutive TTIs (Transmission Time Intervals) and TTI format(s) related information of the TTIs. The method further includes the UE derives transmission direction of symbols in the TTIs or functionality of symbols in the TTIs from the information. The method also includes the UE considers the last TTI of the indicated TTIs as an ending TTI of the channel occupancy. In addition, the method includes the UE performs DL (Downlink) data reception or UL (Uplink) data transmission until the ending TTI.

說明書

Beamforming can be generally categorized into three types of implementation: digital beamforming, hybrid beamforming, and analog beamforming. For digital beamforming, the beam is generated on the digital domain, i.e. the weighting of each antenna element can be controlled by baseband (e.g. connected to a TXRU (Transceiver Units)). Therefore it is very easy to tune the beam direction of each subband differently across the system bandwidth. Also, to change beam direction from time to time does not require any switching time between OFDM (Orthogonal Frequency Division Multiplexing) symbols. All beams whose directions cover the whole coverage can be generated simultaneously. However, this structure requires (almost) one-to-one mapping between TXRU (transceiver/RF chain) and antenna element and is quite complicated as the number of antenna element increases and system bandwidth increases (also heat problem exists).

For Analog beamforming, the beam is generated on the analog domain, i.e. the weighting of each antenna element can be controlled by an amplitude/phase shifter in the RF (Radio Frequency) circuit. Since the weighing is purely controlled by the circuit, the same beam direction would apply on the whole system bandwidth. Also, if beam direction is to be changed, switching time is required. The number of beams generated simultaneous by an analog beamforming depends on the number of TXRU. Note that for a given size of array, the increase of TXRU may decrease the antenna element of each beam, such that wider beam would be generated. In short, analog beamforming could avoid the complexity and heat problem of digital beamforming, while is more restricted in operation. Hybrid beamforming can be considered as a compromise between analog and digital beamforming, where the beam can come from both analog and digital domain.

權(quán)利要求

1
微信群二維碼
意見反饋