The microcontroller MCC communicates with the IS, the DRV, the OS, and the LS. From the connection of the power source and the IS, the MCC measures the input voltage (Vin), which is the voltage coming from the power source into the IS. This measurement permits the microcontroller MCC to determine whether it is necessary to switch to a new power source or to fix the problem to existing one, or to allow the IS to connect to the driver DRV.
The measurement of Vin permits the MCC to determine whether there is adequate current coming from the power source, while the measurement of Vout permits the MCC to determine whether the adequate current transformation took place and the appropriate/adequate voltage is transmitted to the LED lighting source. When the measurements of Vin and Vout are acceptable, the MCC instructs the OS to connect to the LED lighting source, by selecting one of the available out of the said plurality of LED lighting source. This way an initial electric circuit pathway is established.
In an embodiment, the microcontroller MCC communicates with the LED lighting source via a source-sensor combination, such as, but not limited to: LED-photodiode, LED-LASCR, a LED and phototransistor. The microcontroller MCC receives feedback from the LS whether there is adequate light emitted from the initially selected LED lighting source.
In an embodiment, when the MCC receives feedback from the LS that the light emitted is not adequate or the LED lighting source is non-functional, the MCC communicates with the OS and it instructs the said OS to disconnect the said LED lighting source, evaluate the Vout level, and instruct the OS to switch to the next available LED lighting source out of the plurality of the LED lighting source.