The heat spreader 14 can be either a foil or graphite based material. Metal foil (typically aluminum or copper) has isotropic heat transfer properties, meaning that the heat transferred travels in all directions equally as it is applied at a specific point. Graphite is typically flexible but can be rigid, depending on the manufacturing processing used. Natural graphite, which is made of graphite flake, which has been “exfoliated” through a chemical and thermal reaction, then consolidated and compressed to rolls of spreader media. Synthetic or “Pyrolytic” graphite is commonly made from taking rolls of polyimide film which has been carbonized in an oven at temperatures approaching 2000 degrees C. then calendared down to thickness. Graphite, as a heat spreader 14, is commonly formulated to have anisotropic heat transfer properties. The typical heat transfer property in graphite heat spreaders 14 is highly conductive in-plane and is resistant to heat transfer through-plane. As described, it is a relatively thin sheet of material with two surfaces. Isotropic and anisotropic heat transfer properties are well known in the art. A component facing surface 34 and an adhesive facing surface 36 define the thickness of the heat spreader 14. A thin layer that effectively spreads heat is the most desirable property for the heat spreader 14. For a heat spreader 14 with anisotropic properties, there is a primary direction where heat travels along the plane of the material, but it is only a preferential heat transfer direction and some heat transfers through the thickness of the material.