In some instances, the systems, devices, and techniques described herein can improve a functioning of a network. For example, dynamically allocating frequency resources to base stations can improve the functioning of the network by increasing capacity in times of congestion, interference, etc. In some instances, dynamically allocating frequency resources based on capabilities of UE allows for network optimization based on instantaneous (e.g., near real-time) resource needs. In some cases, an allocation model can be set to optimize a QoS (or any other appropriate consideration for QoS, QoE, or the like) for a particular device type (e.g., a 5G UE or a 4G UE). In some examples, the dynamic frequency allocation can be used to implement business preferences and/or to ensure quality levels are met or exceeded for various devices, subscribers, or subscriber levels. In some instances, the computing device and/or base station can allocate frequency resources in contiguous bands to reduce a scanning burden by UEs in communication with a particular base station. In some instances, deallocating the frequency resources when not needed by the base station can allow other base stations to use such frequency resources as needed. In some instances, implementing the dynamic frequency allocation techniques in a self-organizing network can reduce an amount of processing required (e.g., by network engineers) and/or can reduce any periods of reduced network efficiency or connectivity due to a delay in allocating resources. These and other improvements to the functioning of a computer and network are discussed herein.
The systems, devices, and techniques described herein can be implemented in a number of ways. Example implementations are provided below with reference to the following figures.