Virtual reality may be made possible through a coding language such as Virtual Reality Modeling Language (VRML), X3D and others. Such languages can be used to create a series of images and specify what types of interactions are possible for them.
AR and VR may be seen as inverse reflections of each other with regard to what each technology seeks to accomplish and deliver for the user. VR offers a digital recreation of a real-life setting, while AR delivers virtual elements as an overlay to the real world. However, VR and AR are not mutually exclusive. They may be blended together to generate an even more immersive experience. For example, haptic feedback (the vibration and sensation added to interaction with graphics) is considered an augmentation. However, it is commonly used within a virtual reality setting to make the experience more lifelike though touch.
VR and AR are examples of experiences that enable people to become immersed in a simulated environment for entertainment and play, or to add a new dimension of interaction between digital devices and the real world. Taken together, xR interfaces may offer visualization (e.g., visualize what a new couch will look like in your living room before buying it), contextual information (e.g., see instructions on how to replace a toner cartridge directly overlaid on the printer), immersive experiences (e.g., walk beside dinosaurs to experience what life may have been like in Jurassic period), and natural interfaces (e.g., collaboratively edit an architectural model on a table top or directly on site).