Based on the variety of potential locations, an xR system may layer information of the physical world (and even virtual world) to manage the resulting xR experiences. Example layers could be water features like streams and lakes, terrain, roads, political boundaries, owned land parcels, building footprints, utility lines, etc. One way to use this would be to layer in the AR view only on relevant items. Therefore, the xR ecosystem may use real-time analysis for final rendering.
In some cases, a location may include different objects or sub-locations. For example, a tree in front of a house may be a different layer from the house, which may be a different layer from the street plan. Physical locations may also have varying sizes and shapes, including unusual shapes for geo-control. An xR system may store all types of shapes in the xR registry for purposes of setting rules and enforcing rights.
An xR system may utilize a variety of physical location-tracking technologies with varying degrees of precision that can help with identifying location (and orientation) for xR experiences. Examples include GPS, compass heading, beacons, beacon triangulation, WiFi, WiFi triangulation, mesh networks, localized secure networks, satellite, media carriers (i.e., telco, cable networks), IP based geo-location services, geo-enforcement technologies, spatial anchoring, or any combination thereof.