白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for overlaying and integrating computer aided design (CAD) drawings with fluid models

專利號
US10867085B2
公開日期
2020-12-15
申請人
General Electric Company(US NY Schenectady)
發(fā)明人
Zain S. Dweik; Serhan Derikesen; Ozan Erciyas
IPC分類
G06F30/20; G06F30/17; G06N20/00; G01F5/00; G06T15/10; G06F30/13; G06F111/10; G06F111/20
技術(shù)領(lǐng)域
3d,modeling,physics,model,learning,data,or,can,component,fluid
地域: NY NY Schenectady

摘要

Techniques that facilitate overlaying and integrating computer aided design drawings with fluid models are presented. For example, a system includes a modeling component, a machine learning component, and a graphical user interface component. The modeling component generates a three-dimensional model of a mechanical device based on a library of stored data elements. The machine learning component predicts one or more characteristics of the mechanical device based on a machine learning process associated with the three-dimensional model. The machine learning component also generates physics modeling data of the mechanical device based on the one or more characteristics of the mechanical device. The graphical user interface component generates, for a display device, a graphical user interface that presents the three-dimensional model and renders the physics modeling data on the three-dimensional model.

說明書

In an embodiment, the machine learning component 106 can predict the one or more characteristics associated with the one or more 3D models based on input data and one or more machine learning processes associated with the one or more 3D models. The input data can be, for example, a set of parameters for a fluid capable of flowing through the one or more 3D models, a set of parameters for a thermal energy capable of flowing through the one or more 3D models, a set of parameters for a combustion chemical reaction capable of flowing through the one or more 3D models, a set of parameters for electricity flowing through the one or more 3D models, and/or another set of parameters for input provided to the one or more 3D models. The one or more characteristics associated with the one or more 3D models can correspond to one or more characteristics of the device (e.g., the mechanical device and/or the electronic device). In one example, distinct types of control volumes (e.g., chambers) simulating reservoirs, volume mixing dynamics, volume inertial dynamics, volume pumping dynamics, and/or volume gravitational dynamics can be employed by the machine learning component 106 to model and/or simulate various fluid flow conditions associated with the one or more 3D models. In an aspect, the machine learning component 106 can also employ measured data and/or streamed data to set boundary conditions for one or more machine learning processes. For example, the machine learning component 106 can also employ measured data and/or streamed data to set boundary conditions for supply chambers and sink chambers and/or to establish driving forces for simulated physics phenomena (e.g., fluid dynamics, thermal dynamics, combustion dynamics, angular momentum, etc.).

權(quán)利要求

1
微信群二維碼
意見反饋