Given the attendant challenges that modern electrical power systems pose to owners, operators and managers of critical (facility specific, regional, national and international) electrical networks and the shortcomings of conventional energy management systems; there is a need for an energy management system that integrates a real-time energy cost computational algorithm (i.e., real-time utility power pricing engine) along with a logical power flow, forecasting, state estimation, reliability and availability model (i.e., virtual system model) of the electrical system, a data acquisition system, and power system simulation engines with a logic based approach to the adjustment of key parameters within the virtual system model to synchronize the virtual system model with the real facility and effectively “age” the virtual system model along with the electrical system it is associated with. Such a system can be configured to make predictions regarding the expected energy efficiency, energy costs, cost of inherent system losses and cost due to running the electrical system at poor power factors along with calculating and comparing the availability and reliability of the electrical system in real-time. These predictions and calculations can then be used to arrive at actionable, reliability centered maintenance and energy management strategies for mission critical or business critical operations which may lead to the realignment of the electrical system for optimized performance, maintenance or security.