FIG. 38 illustrates a high-level flow chart of an example process for performing real-time power analytics on a DC microgrid. A microgrid is a localized grouping of electricity generation, energy storage, and loads that normally operates connected to a centralized grid or macrogrid. The microgrid may have a single point of common coupling with the macrogrid and may function autonomously from the macrogrid, for example, if disconnected. For instance, a microgrid may represent a college campus, a housing development, etc. A microgrid may comprise one or more local generation resources. A microgrid may operate with small-scale power generation technologies, called distributed energy resource systems (e.g., fuel cells, wind turbines, solar panels, and other energy source), which provide alternatives to or enhancements of traditional electrical power generation systems, such as coal, nuclear, or hydroelectric power plants. Microgrids distribute energy generation, and therefore, can provide a more robust power grid. The opportunity to incorporate multiple sources and uses in the same power network is critical to the operation of microgrids.
As discussed above, existing systems focus on wholly AC power networks. Existing systems also rely on turnkey structures that are proprietary and frequently isolated from competition with other technologies and infrastructures (including legacy systems). This creates significant barriers to the adoption and wide scale deployment of DC microgrids. This, in turn, creates barriers to the adoption and wide scale deployment of microgrids in general, since the incorporation of DC in medium and high voltage power networks is essential to the rapid deployment and adoption of microgrids across geographies and economic strata.