白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for real-time DC microgrid power analytics for mission-critical power systems

專利號
US10867087B2
公開日期
2020-12-15
申請人
WaveTech Global Inc.(US NJ Hoboken)
發(fā)明人
Kevin Meagher; Brian Radibratovic; Adib Nasle
IPC分類
G06F17/50; G06F30/20; H02J13/00; H04L29/08; G06F30/00; G05F1/66; H02J3/00; G06F30/367; G06F119/06
技術(shù)領(lǐng)域
system,analytics,power,in,data,electrical,real,virtual,can,be
地域: NJ NJ Hoboken

摘要

Systems and methods for performing power analytics on a microgrid. In an embodiment, predicted data is generated for the microgrid utilizing a virtual system model of the microgrid, which comprises a virtual representation of a topology of the microgrid. Real-time data is received via a portal from at least one external data source. If the difference between the real-time data and the predicted data exceeds a threshold, a calibration and synchronization operation is initiated to update the virtual system model in real-time. Power analytics may be performed on the virtual system model to generate analytical data, which can be returned via the portal.

說明書

BACKGROUND OF THE INVENTION 1. Field of the Invention

The present invention relates generally to computer modeling and management of systems and, more particularly, to power analytics techniques using a real-time system model of a direct current (DC) microgrid for mission-critical power systems.

2. Background of the Invention

Computer models of complex systems enable improved system design, development, and implementation through techniques for off-line simulation of system operation. That is, system models can be created on computers and then “operated” in a virtual environment to assist in the determination of system design parameters. All manner of systems can be modeled, designed, and operated in this way, including machinery, factories, electrical power and distribution systems, processing plants, devices, chemical processes, biological systems, and the like. Such simulation techniques have resulted in reduced development costs and superior operation.

Design and production processes have benefited greatly from such computer simulation techniques, and such techniques are relatively well developed, but they have not been applied in real-time to DC microgrids, e.g., for real-time operational monitoring and management of the microgrid. In addition, predictive failure analysis techniques do not generally use real-time data that reflect actual system operation. Greater efforts at real-time operational monitoring and management would provide more accurate and timely suggestions for operational decisions, and such techniques applied to failure analysis would provide improved predictions of system problems before they occur.

權(quán)利要求

1
微信群二維碼
意見反饋