白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for real-time DC microgrid power analytics for mission-critical power systems

專利號
US10867087B2
公開日期
2020-12-15
申請人
WaveTech Global Inc.(US NJ Hoboken)
發(fā)明人
Kevin Meagher; Brian Radibratovic; Adib Nasle
IPC分類
G06F17/50; G06F30/20; H02J13/00; H04L29/08; G06F30/00; G05F1/66; H02J3/00; G06F30/367; G06F119/06
技術(shù)領(lǐng)域
system,analytics,power,in,data,electrical,real,virtual,can,be
地域: NJ NJ Hoboken

摘要

Systems and methods for performing power analytics on a microgrid. In an embodiment, predicted data is generated for the microgrid utilizing a virtual system model of the microgrid, which comprises a virtual representation of a topology of the microgrid. Real-time data is received via a portal from at least one external data source. If the difference between the real-time data and the predicted data exceeds a threshold, a calibration and synchronization operation is initiated to update the virtual system model in real-time. Power analytics may be performed on the virtual system model to generate analytical data, which can be returned via the portal.

說明書

The ratio of arc current to bolted current can then be used, in step 1710, to determine the arcing current in a specific protective device, such as a circuit breaker or fuse. A coordinated time-current curve analysis can be performed for the protective device in step 1712. In step 1714, the arcing current in the protective device and the time current analysis can be used to determine an associated fault clearing time, and in step 1716 a corresponding arc energy can be determined based on, e.g., IEEE 1584 equations applied to the fault clearing time and arcing current.

In step 1718, the 100% arcing current can be calculated and for systems operating at less than 1 kV the 85% arcing current can also be calculated. In step 1720, the fault clearing time in the protective device can be determined at the 85% arcing current level. In step 1722, e.g., IEEE 1584 equations can be applied to the fault clearing time (determined in step 1720) and the arcing current to determine the 85% arc energy level, and in step 1724 the 100% arcing current can be compared with the 85% arcing current, with the higher of the two being selected. IEEE 1584 equations, for example, can then be applied to the selected arcing current in step 1726 and the PPE level and boundary distance can be determined in step 1728. In step 1730, these values can be output, e.g., in the form of a display or report.

In other embodiments, using the same or a similar procedure as illustrated in FIG. 17, the following evaluations can be made in real-time and based on an accurate, e.g., aged, model of the system:

    • Arc Flash Exposure based on IEEE 1584;

權(quán)利要求

1
微信群二維碼
意見反饋