The ratio of arc current to bolted current can then be used, in step 1710, to determine the arcing current in a specific protective device, such as a circuit breaker or fuse. A coordinated time-current curve analysis can be performed for the protective device in step 1712. In step 1714, the arcing current in the protective device and the time current analysis can be used to determine an associated fault clearing time, and in step 1716 a corresponding arc energy can be determined based on, e.g., IEEE 1584 equations applied to the fault clearing time and arcing current.
In step 1718, the 100% arcing current can be calculated and for systems operating at less than 1 kV the 85% arcing current can also be calculated. In step 1720, the fault clearing time in the protective device can be determined at the 85% arcing current level. In step 1722, e.g., IEEE 1584 equations can be applied to the fault clearing time (determined in step 1720) and the arcing current to determine the 85% arc energy level, and in step 1724 the 100% arcing current can be compared with the 85% arcing current, with the higher of the two being selected. IEEE 1584 equations, for example, can then be applied to the selected arcing current in step 1726 and the PPE level and boundary distance can be determined in step 1728. In step 1730, these values can be output, e.g., in the form of a display or report.
In other embodiments, using the same or a similar procedure as illustrated in