白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Systems and methods for real-time DC microgrid power analytics for mission-critical power systems

專利號
US10867087B2
公開日期
2020-12-15
申請人
WaveTech Global Inc.(US NJ Hoboken)
發(fā)明人
Kevin Meagher; Brian Radibratovic; Adib Nasle
IPC分類
G06F17/50; G06F30/20; H02J13/00; H04L29/08; G06F30/00; G05F1/66; H02J3/00; G06F30/367; G06F119/06
技術(shù)領(lǐng)域
system,analytics,power,in,data,electrical,real,virtual,can,be
地域: NJ NJ Hoboken

摘要

Systems and methods for performing power analytics on a microgrid. In an embodiment, predicted data is generated for the microgrid utilizing a virtual system model of the microgrid, which comprises a virtual representation of a topology of the microgrid. Real-time data is received via a portal from at least one external data source. If the difference between the real-time data and the predicted data exceeds a threshold, a calibration and synchronization operation is initiated to update the virtual system model in real-time. Power analytics may be performed on the virtual system model to generate analytical data, which can be returned via the portal.

說明書

FIG. 19 is a flow chart illustrating an example process for conducting a real-time power capacity assessment of an electrical power distribution and transmission system, in accordance with one embodiment. The stability of an electrical power system can be classified into two broad categories: transient (angular) stability and voltage stability (i.e., power capacity). Voltage stability refers to the electrical system's ability to maintain acceptable voltage profiles under different system topologies and load changes (i.e., contingency events). That is, voltage stability analyses determine bus voltage profiles and power flows in the electrical system before, during, and immediately after a major disturbance. Generally speaking, voltage instability stems from the attempt of load dynamics to restore power consumption beyond the capability of the combined transmission and generation system. One factor that comes into play is that unlike active power, reactive power cannot be transported over long distances. As such, a power system rich in reactive power resources is less likely to experience voltage stability problems. Overall, the voltage stability of a power system is of paramount importance in the planning and daily operation of an electrical system.

Traditionally, transient stability has been the main focus of power system professionals. However, with the increased demand for electrical energy and the regulatory hurdles blocking the expansion of existing power systems, the occurrences of voltage instability has become increasingly frequent and therefore has gained increased attention from power system planners and power system facility operators. The ability to learn, understand and make predictions about available power system capacity and system susceptibility to voltage instability, in real-time would be beneficial in generating power trends for forecasting purposes.

權(quán)利要求

1
微信群二維碼
意見反饋