As shown in FIGS. 1 and 3, the second sub-pixel region 2 is disposed adjacent to the first sub-pixel region 1, and the first light-emitting unit 3 located at the first sub-pixel region 1 includes a first anode 31 and a first light-emitting layer 32. The first anode 31 and the first light-emitting layer 32 both extend to the second sub-pixel region 2, and may solve for the problem of light-emitting unevenness caused by the second sub-pixel region 2 lacking the light-emitting unit, thereby avoiding affecting display. As shown in FIG. 1, in order to clearly show a boundary between the second sub-pixel region 2 and the first sub-pixel region 1, the gate line S is a continuous solid line, which does not mean that the first anode 31 or the first light-emitting layer 32 is physically cut off by the gate line S.
Around the second sub-pixel region 2, there are disposed a plurality of first sub-pixel regions 1 adjacent thereto. Colors of the light-emitting display sub-pixels in the first sub-pixel region 1 are, for example, red, green and blue. Since the human eye is sensitive to green, the green light-emitting sub-pixel may be selected to extend to the second sub-pixel region 2, which is advantageous for avoiding the influence on the display effect. Of course, in other embodiments, it is not limited to enable the green light-emitting display sub-pixel in the first sub-pixel region 1 to extend to the second sub-pixel region 2, and the red or blue light-emitting sub-pixel may be selected to extend to the second sub-pixel region 2.