Graph 156 depicts emission pulses and variable separating intervals between pulses caused by the pulse density modulation emission scheme. With the pulse density modulation emission scheme, the sub-pixel 72 emits pulses separated by different length of no emission intervals to change an overall light emitted from the sub-pixel 72. As depicted in graph 156, image data 98 may cause the sub-pixel to emit an emission pulse 158 and to not emit for the time period of a no-emission interval 160. For example, emission pulses 162 have a smaller no-emission interval separating respective emission pulses than the emission interval 160, and thus the LED 103 of the sub-pixel 72 may emit light for the emission pulses 162 that is perceived as brighter than a light emitted from the LED 103 due to the emission pulse 158.
Thus, to summarize, through using memory-in-pixels techniques, a timing controller 54 may program image data 98 into a display system 52 in smaller portions of image data 98 as opposed to programming image data for all sub-pixels 72 at a same time. To illustrate, a timing diagram of signal transmitted within a display system 52 to prepare to transmit image data for storage in one or more memories 78 illustrates a red image data transmission period 174R, green image data transmission period 174G, blue image data transmission period 174B, one or more copy periods 176, and one or more enable periods 178, is shown in