After precharging the comparator 490, the row driver 60 may increment a count of counting circuitry (block 526). The row driver 60 may increment counting circuitry, for example, in response to a clocking signal timing the incrementing. After incrementing the counting circuitry, the sub-pixel 72 automatically determines if the count of the counting circuitry equals or exceeds a value represented by the stored DATA 412. This occurs because the individual bits of the count and the individual bits of the DATA 412 are respectively transmitted to the comparator 490, where the comparator 490 outputs a logical high value if all of the bits match or a logical low value if even one bit does not match. The comparator 490 output transmits for storage, or memorization, in inverter pair 498 of the memory circuitry 492, where the value is stored until the row driver 60 enables emission via enabling of emit_en signal 420.
After incrementing the count of counting circuitry, the row driver 60 causes emission based on the output from the comparator 490 determination stored in the memory circuitry 492 (block 528). The row driver 60 causes emission through enabling the emit_en signal 420. As described earlier, upon the enabling of emit_en 420, the value transmits from the inverter pair 498 to the LED driver and light-emitting circuitry of the sub-pixel to cause light emission, for example, from a LED 230 or any suitable light-emitting circuitry. The value transmitted from the memory circuitry 492 may activate or deactivate switching circuitry of the LED driver and light-emitting circuitry responsible for causing light emission.