Although it is exemplarily illustrated in FIG. 3 that the pixels are driven by the first power ELVDD, the initialization power VINT, and the second power ELVSS, which fluctuate within one frame period, the pixels may be driven by various methods. For example, as shown in FIG. 4, in the data writing period PA3, the first power ELVDD has the second voltage level ELVDD_M, the initialization power VINT has the fifth voltage level VINT_H, and the second driver 20 may sequentially provide the scan signals S[1] to S[n] having the gate-on voltage level VGL to the scan lines for writing data signals into the pixels. That is, unlike the pixel driving method shown in FIG. 3, the pixel driving method shown in FIG. 4 can prevent the leakage of a current flowing to the anode from the first power ELVDD through the first transistor T1 during the data writing period PA3 by changing the first power ELVDD to the second voltage level ELVDD_M. That is, a current leakage path can be removed by setting a voltage of the first end of the first transistor T1 to a voltage (e.g., the second voltage level ELVDD_M) between the first voltage level ELVDD_L and the third voltage level ELVDD_H. Accordingly, a change of the data signal written into the pixel due to the current leakage can be prevented, and display quality deterioration (e.g., viewing of a stain) due to luminance deviation between the pixels can be prevented.