Before a time tc1 within the initialization period PC1, the light emission control signals EM[1] to EM[n] have the gate-on voltage level VGL. The second node N22 and the anode are connected to the first power ELVDD through the fourth transistor T24, which is turned on by the light emission control signals EM[1] to EM[n], and the first transistor T21, which is turned on by the first power ELVDD. The anode is initialized to a voltage which is acquired by reflecting the threshold voltage of the first transistor T21 to the first level ELVDD. When the first power ELVDD is changed to the first level ELVDD_L at a starting point of the initialization period PC1, a voltage of the second node N22 and a voltage ANODE of the anode of the organic light emitting diode OLED are initialized to a voltage, which is acquired by applying the threshold voltage of the first transistor T21 to the first level ELVDD. That is, the voltage ANODE of the anode of the organic light emitting diode OLED may be initialized.
During a period tc1 to tc2, the scan signals S[1] to S[n] have the gate-on voltage level VGL, and the light emission control signals EM[1] to EM[n] have the gate-off voltage level VGH. The second transistor T22 and the third transistor T23 of each of the pixels PX are turned on by the scan signals S[1] to S[n] having the gate-on voltage level VGL, and thus the first node N21 and the anode are connected. The fourth transistor T21 of each pixel PX is turned off by the light emission control signals EM[1] to EM[n] having the gate-off voltage level VGH.