The driving transistor 112 receives a current supplied from the power supply potential VDD via the switching transistor 114, and causes the organic light emitting element 111 to emit light by current driving. At this time, since the amount of the current flowing to the organic light emitting element 111 is determined by the voltage held by the capacitive element 116, the light emission amount of the organic light emitting element 111 can be controlled. The switching transistor 114 is rendered conductive when the signal used to control light emission is applied from the vertical driving circuit 103 to the gate electrode via the scanning line 122. That is, the switching transistor 114 has a function of controlling light emission and non-emission of the organic light emitting element 111.
When the signal used to control the potential of the anode electrode of the organic light emitting element 111 is applied from the vertical driving circuit 103 to the gate electrode of the switching transistor 115 via the scanning line 123, the switching transistor 115 selectively supplies the power supply potential VSS to the anode electrode.