A driving method for a liquid crystal device according to another aspect of the present disclosure is a driving method for a liquid crystal device including, a first substrate in which a plurality of pixel electrodes are arranged in a display region, a second substrate in which a common electrode is disposed throughout the display region, the common electrode being supplied with a common signal potential varying between a first potential and a second potential, which is lower than the first potential, in a first period, a liquid crystal layer held between the first substrate and the second substrate opposing mutually with a sealant interposed therebetween, at least three electrodes for ion trapping, the at least three electrodes being disposed at intervals from one another between the display region of the first substrate and the sealant, a switching element coupled to each of the at least three electrodes, and a holding capacitor coupled between each of the at least three electrodes and a wiring line to which the common signal potential is supplied. The driving method includes, inputting, to the switching element, a driving signal varying between a third potential and a fourth potential, which is lower than the third potential, in units of durations equal to or less than ? of the first period, and applying, to the at least three electrodes, AC signals varying between a positive-polarity potential and a negative-polarity potential, with a potential of the common signal being a reference, in a second period which is longer than the first period, in a state where phases of the AC signals are shifted from one another.