白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Liquid crystal device, liquid crystal device driving method, and electronic apparatus

專(zhuān)利號(hào)
US10867567B2
公開(kāi)日期
2020-12-15
申請(qǐng)人
SEIKO EPSON CORPORATION(JP Tokyo)
發(fā)明人
Satoshi Yatabe; Naoki Tomikawa
IPC分類(lèi)
G09G3/36; G02F1/1343
技術(shù)領(lǐng)域
potential,electrode,signal,driving,crystal,com,in,ac,liquid,polarity
地域: Tokyo

摘要

A liquid crystal device includes, peripheral electrodes including three electrodes for ion trapping, and a transistor coupled to each of the three electrodes. A common signal (COM signal) that varies between a first potential and a second potential in a first period is applied to a counter electrode. A driving signal that varies between a third potential and a fourth potential is input to the transistor. The driving signal is coupled to or uncoupled from the peripheral electrodes by the transistor in a unit of a duration equal to or less than ? of the first period. AC signals varying between a positive-polarity potential and a negative-polarity potential, with a potential of the common signal being a reference, in a second period longer than the first period, are applied to the three electrodes of the peripheral electrodes, in a state where phases of the AC signals are shifted mutually.

說(shuō)明書(shū)

In the driving method for a liquid crystal device according to Example 1, the driving signal is intermittently applied to the peripheral electrode 120 through the transistor 130 serving as a switching element, and hence, it is possible to reduce the width of voltage of the driving signal to reduce the energy consumption, as compared with a comparative example in which the ion-surf driving and the common inversion driving are simply combined.

EXAMPLE 2

Next, a driving method for a liquid crystal device according to Example 2 will be described with reference to FIG. 9. FIG. 9 is a timing chart illustrating the common signal, the driving signal, and the AC signal in the driving method for a liquid crystal device according to Example 2. With respect to Example 1, the driving method for a liquid crystal device according to Example 2 is an example in which the driving signal is applied directly to the peripheral electrode 120 without passing through the transistor 130. Below, description will be made of a case where the driving signal S1 is applied to the first electrode 121 among the peripheral electrode 120, as an example. More specifically, in the driving method for a liquid crystal device according to Example 2, the COM signal is a signal that varies in the first period between the first potential (5 V) and the second potential (0 V) that is smaller than the first potential, as illustrated in FIG. 9. The first period is 8.4 ms (milliseconds) as with the COM signal according to Example 1. In other words, the frequency of the COM signal is 120 Hz.

權(quán)利要求

1
微信群二維碼
意見(jiàn)反饋