The COM signal has the second potential (0 V) and the driving signal S1 has the third potential (5 V) from time t1 to time t2 in which the control signal C1 is in an ON state, then the potential of the first electrode 121 with respect to the COM potential is +5 V, which is positive, and is maintained at +5 V in the duration from time t2 to time t8 in which the control signal C1 is in an OFF state. The COM signal has the first potential (5 V) and the driving signal S1 has the fourth potential (0 V) from time t8 to time t9 in which the control signal C1 is in an ON state again, then the potential of the first electrode 121 with respect to the COM potential is ?5 V, which is negative, and is maintained at ?5 V in the duration from time t9 to time t13 in which the control signal C1 is in an OFF state. Next, the COM signal has the second potential (0 V) and the driving signal S1 has the third potential (5 V) from time t13 to time t14 in which the control signal C1 is in an ON state, then the potential of the first electrode 121 with respect to the COM potential is +5 V, which is positive, and is maintained at +5 V in the duration from time t14 to time t18 in which the control signal C1 is in an OFF state. The COM signal has the first potential (5V) and the driving signal S1 has the fourth potential (0 V) from time t18 to time t19 in which the control signal C1 is in an ON state again, then the potential of the first electrode 121 with respect to the COM potential is ?5 V, which is negative, and is maintained at ?5 V in the duration from time t19 to time t25 in which the control signal C1 is in an OFF state. After that, the periodical varying in potential of the AC signal for the first electrode 121 is repeated in correspondence to the potential of the COM signal and the potential of the driving signal S1.