Next, the frequency (second period) of the AC signal applied to the peripheral electrode 120 will be described.
In Example 1 and Example 3 according to the above described first exemplary embodiment and Example 4 and Example 5 according to the above described second exemplary embodiment, the period of the driving signal and the AC signal are six times as long as the first period of the COM signal. This setting is provided to intelligibly illustrate the driving signal and the AC signal.
To ensure that ionic impurities are swept toward the third electrode 123 by the scrolling of electric field generated around the peripheral electrode 120 including the three electrodes 121, 122, and 123 configured for ion trapping, the frequency of the AC signal needs to be determined in consideration of the moving speed of the ionic impurities. When the speed of the scrolling of electric field is faster than the moving speed of ionic impurities, the ionic impurities may not keep up with the scrolling of electric field, and the effect of sweeping the ionic impurities may be decreased.
A preferable frequency f (Hz) of the AC signals in the ion trapping mechanism including the peripheral electrode 120 and the like according to the above described exemplary embodiments is obtained in the following manner.
The moving speed v (m/s (second)) of ionic impurities in the liquid crystal layer 50 is given as the product of the electric field strength e (V/m) between adjacent electrodes configured for ion trapping and the mobility μ (m2/V·s (second)) of the ionic impurities as represented by equation (1). That is, v=e×μ??(1).