白丝美女被狂躁免费视频网站,500av导航大全精品,yw.193.cnc爆乳尤物未满,97se亚洲综合色区,аⅴ天堂中文在线网官网

Liquid crystal device, liquid crystal device driving method, and electronic apparatus

專利號
US10867567B2
公開日期
2020-12-15
申請人
SEIKO EPSON CORPORATION(JP Tokyo)
發(fā)明人
Satoshi Yatabe; Naoki Tomikawa
IPC分類
G09G3/36; G02F1/1343
技術(shù)領(lǐng)域
potential,electrode,signal,driving,crystal,com,in,ac,liquid,polarity
地域: Tokyo

摘要

A liquid crystal device includes, peripheral electrodes including three electrodes for ion trapping, and a transistor coupled to each of the three electrodes. A common signal (COM signal) that varies between a first potential and a second potential in a first period is applied to a counter electrode. A driving signal that varies between a third potential and a fourth potential is input to the transistor. The driving signal is coupled to or uncoupled from the peripheral electrodes by the transistor in a unit of a duration equal to or less than ? of the first period. AC signals varying between a positive-polarity potential and a negative-polarity potential, with a potential of the common signal being a reference, in a second period longer than the first period, are applied to the three electrodes of the peripheral electrodes, in a state where phases of the AC signals are shifted mutually.

說明書

In the ion trapping mechanism according to the above described exemplary embodiments, each of the three electrodes 121, 122, and 123 configured for ion trapping is not limited to being disposed to have a frame shape surrounding the display region E1. As illustrated in FIG. 4, when ionic impurities are located unevenly in a limited position (the lower left corner and the upper right corner of the display region E1 in FIG. 4) in accordance with a method of alignment control of the liquid crystal molecules LC, the at least three electrodes 121, 122, and 123 configured for ion trapping may be disposed in different positions at different intervals from the display region E1 and at intervals between each other in correspondence to the position where ionic impurities are located unevenly. In other words, the at least three electrodes 121, 122, and 123 configured for ion trapping may be disposed in different positions at different distances from the display region E1 and at distances between each other in correspondence to the position where ionic impurities are located unevenly.

MODIFIED EXAMPLE 2

The liquid crystal device 100 or the liquid crystal device 200 to which the ion trapping mechanism according to the above-described exemplary embodiments is applied is not limited to being of transmission type, and the ion trapping mechanism can also be applied to a reflection-type liquid crystal device in which pixel electrodes 15 are configured by electrically conducting films having light reflection properties.

MODIFIED EXAMPLE 3

權(quán)利要求

1
微信群二維碼
意見反饋