According to the configuration of this aspect, the switching element supplies driving signals to the electrodes configured for ion trapping in a coupled state, and does not supply the driving signals to the electrodes configured for ion trapping in an uncoupled state. A holding capacitor is coupled to the electrodes, and thus even in an uncoupled state, the potentials of those electrodes are maintained at the potential imparted by the driving signals during the coupled state. The potential of the common signal varies between the first potential and the second potential in the first period. Accordingly, when a coupled state in which the driving signals are coupled to the electrodes configured for ion trapping, and an uncoupled state in which the driving signals are not coupled to the electrodes configured for ion trapping, occur in units of durations equal to or less than ? of the first period, the voltage range of an AC signal that varies between a positive-polarity potential and a negative-polarity potential, taking the potential of the common signal as a reference, can be reduced as compared to a case of a continually-coupled state, i.e., a case where the driving signals are input to the electrodes without providing a switching element or a holding capacitor. Thus even when a common inversion driving method is employed, AC signals that, taking the potential of the common signal as a reference, vary between a positive-polarity potential and a negative-polarity potential in a second period being longer than the first period, in a state where the phases of the AC signals are shifted from each other, can be applied to the at least three electrodes configured for ion trapping, in a state where the voltage range of the AC signals is constrained to a set range. In other words, it is possible to provide a liquid crystal device that, based on a common inversion driving method, produces an electrical field among the at least three electrodes configured for ion trapping by the AC signals, which attracts ionic impurities in the liquid crystal layer to outside of the display region. This suppresses the occurrence of display unevenness due to ionic impurities and makes low-power-consumption driving possible, and furthermore makes it possible to suppress a rise in the breakdown voltage of the driving circuit that generates the driving signals.