According to the driving method of this aspect, the common electrode, to which is supplied the common signal that varies between the first potential and the second potential being lower than the first potential in the first period, is included, and thus common inversion driving can be carried out, which makes it possible to suppress a drop in display quality caused by degradation of the liquid crystal material. Furthermore, AC signals having different phases are supplied to the first electrode, the second electrode, and the third electrode, which makes it possible to sweep ionic impurities in the display region to outside the display region and suppress display unevenness. Additionally, this driving is carried out without providing the first electrode, the second electrode, and the third electrode with switching circuits, and thus the cost can be suppressed.
In the above-described driving method for a liquid crystal device, the second period is preferably longer than the first period.
According to this method, the second period is longer than the first period, and thus common inversion driving can be carried out when AC signals that vary in the second period are supplied to the first electrode, the second electrode, and the third electrode at shifted phases. Additionally, an electrical field can be caused to move from the display region toward a region on the outer side, which makes it possible to sweep ionic impurities from the display region to the region on the outer side.